首页> 外文OA文献 >Saccadic and Postsaccadic Disconjugacy in Zebrafish Larvae Suggests Independent Eye Movement Control
【2h】

Saccadic and Postsaccadic Disconjugacy in Zebrafish Larvae Suggests Independent Eye Movement Control

机译:斑马鱼幼虫的偶发和声后失调提示独立的眼球运动控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spontaneous eye movements of zebrafish larvae in the dark consist of centrifugal saccades that move the eyes from a central to an eccentric position and postsaccadic centripetal drifts. In a previous study, we showed that the fitted single-exponential time constants of the postsaccadic drifts are longer in the temporal-to-nasal (T->N) direction than in the nasal-to-temporal (N->T) direction. In the present study, we further report that saccadic peak velocities are higher and saccadic amplitudes are larger in the N->T direction than in the T->N direction. We investigated the underlying mechanism of this ocular disconjugacy in the dark with a top-down approach. A mathematic ocular motor model, including an eye plant, a set of burst neurons and a velocity-to-position neural integrator (VPNI), was built to simulate the typical larval eye movements in the dark. The modeling parameters, such as VPNI time constants, neural impulse signals generated by the burst neurons and time constants of the eye plant, were iteratively adjusted to fit the average saccadic eye movement. These simulations suggest that four pools of burst neurons and four pools of VPNIs are needed to explain the disconjugate eye movements in our results. A premotor mechanism controls the synchronous timing of binocular saccades, but the pools of burst and integrator neurons in zebrafish larvae seem to be different (and maybe separate) for both eyes and horizontal directions, which leads to the observed ocular disconjugacies during saccades and postsaccadic drifts in the dark.
机译:斑马鱼幼虫在黑暗中的自发眼睛运动包括离心扫视,这些扫视将眼睛从中心位置移到偏心位置,并发生了脚后突向心漂移。在先前的研究中,我们表明,后脚漂移的拟合单指数时间常数在时间到鼻(T-> N)方向上比在鼻子到时间(N-> T)方向上更长。在本研究中,我们进一步报告,在N-> T方向上,扫掠峰值速度更高,而扫掠振幅更大,而在T-> N方向上。我们采用自上而下的方法研究了这种在黑暗中眼球脱位的潜在机制。建立了包括眼科植物,一组爆发性神经元和速度至位置神经积分器(VPNI)在内的数学眼动模型,以模拟典型的幼虫在黑暗中的眼球运动。迭代调整建模参数,例如VPNI时间常数,由爆发神经元生成的神经冲动信号和眼科植物的时间常数,以适应平均眼球运动。这些模拟表明,需要四组爆发性神经元和四组VPNI来解释我们的结果中非共轭的眼球运动。前运动机制控制双眼扫视的同步时间,但是斑马鱼幼虫的爆发和整合神经元池在眼睛和水平方向上似乎是不同的(并且可能是分开的),这导致在扫视和脚后突漂移期间观察到的眼球不均在黑暗中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号